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Thermal Issues in HiFIVE

• Combined high power and high frequency lead to high power density in 
the interaction structure
– Beam interception, RF losses

• Need to control interaction structure temperatures
– Thermal expansion (dimensional changes)
– Thermal cycling (reliability)
– Outgassing

• Additional thermal constraints (or advantages!) on microfabricated
structures & materials suitable for microfabrication vs. standard 
vacuum electronics

• Beam collector also presents thermal issues

• Attention to high efficiency (compact) thermal management is required

A seedling study on thermal issues was performed at NRL under DARPA/MTO sponsorship
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• Sheet beam with 5:1 aspect ratio*

• Broadband coupled cavity traveling wave structure

• Beam scraping and RF losses contribute to waste 
heat in general

– Beam scraping was assumed to be the 
dominant source of waste heat for the analysis

• 10% beam scraping* total was assumed to occur 
over the final portion of a typical interaction 
structure

– About 1.45 cm length at 220 GHz (based on 
scaling from W-band devices)

* Note that parameters for this seedling study 
were for initial estimation purposes only, and 
that in actual designs the Go/No-Go metrics in 
the BAA must be used, plus details of the 
actual combined beam interception and RF 
losses in performer structures



220 GHz CW Heat Flux Levels

50 W CW Output Power at 2.5% efficiency or

100 W CW Output Power at 5% efficiency

2000 W of beam power

× 10% beam scraping 

200 W dissipated power in structure

Area = 1.45 cm long x 0.16 cm wide (for 5:1) x 2 (top & bottom) x 0.5 (50% vane coverage)

= 0.10 cm2

2000 W/cm2 on vane surfaces



Typical Analysis Results

• Material is copper (κ = 3.85 Wcm-1K-1)

• Rear heat transfer coefficient

– 2.5 Wcm-2K-1 @ 20 oC bulk

– Consistent with several types of 
moderately aggressive cooling 
approaches

• Peak structure temperature 164 oC

• Rear temperature ~ 97 oC

Temperatures ( oC) in a 220 GHz copper sheet beam TWT 
structure, with a CW power density of 2 kW/cm2 on the vanes

(corresponds to 50 W output power if efficiency = 2.5%)



Example with Microchannel-Based 
Liquid Cooling

• Material is copper (κ = 3.85 Wcm-1K-1)

• Microchannel cooling on rear

– 250 μm wide by 600 μm tall channels

– 5 m/s water flow velocity

– 20 oC bulk water temperature

• Peak structure temperature 116 oC

• Peak coolant channel temperature ~ 55 oC

Temperatures ( oC) in a 220 GHz copper sheet beam TWT structure using a 
mircochannel cooler, with a CW power density of 2 kW/cm2 on the fingers 

(corresponds to 50 W output power if efficiency = 2.5%)



Scaling of Power Levels with Frequency 
and Allowable Structure Temperature
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• All dimensions assumed to be scaled 
as 1/f , where f is the frequency

• Material is copper

(κ = 3.85 Wcm-1K-1)

• Microchannel cooling on rear

• Microchannel dimensions also 
scaling as 1/f

• 10% beam interception assumed

• Curves for various peak structure 
temperatures are shown



Scaling Curves for Different Structure 
Materials and Cooling Technologies
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• Copper (κ = 3.85 Wcm-1K-1)

• Silicon (κ = 1.50 Wcm-1K-1)

(has thin metal coating for RF)

• Modest liquid cooling and 
microchannel cooling both 
examined

• Silicon on polycrystalline CVD SiC
microchannel cooler also 
examined



A Potpourri of Possible Thermal 
Management Techniques 

CVD Diamond Structures, 
Layers, & Composites

Vapor Chambers

Heat PipesMicrochannel Coolers

Spray Cooling

Graphite Layers

Forced 2-Phase Cooling Liquid Jet Cooling

Pin-Fin and Foam-
Based Cold Plates

http://www.sp3inc.com/spreader.htm
http://www.sp3inc.com/wafers.htm
http://en.wikipedia.org/wiki/Image:IsoSkin.gif
http://www.fluent.com/solutions/examples/img/x248i1.gif


Summary

• Dissipated power densities can be above 1 kW/cm2 in the 
interaction structure

• Beam collector is also a region of concern

• Continuous-wave, reliable device operation is required

• High efficiency thermal management is needed to handle the 
high heat fluxes in a compact manner

• Example analysis shows that thermal management needs are 
consistent with several approaches / materials systems

• A wide variety of emerging thermal management techniques 
could be appropriate
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